import matplotlib.pyplot as plt
import numpy as np
= np.linspace(0, 10, 100)
x = np.sin(x)
y
plt.plot(x, y) plt.show()
5 Best Practices in Matplotlib: Common Mistakes and Improvements
In this chapter, we demonstrate a poor and an improved example for each common issue encountered when plotting with Matplotlib.
5.1 1. Missing Labels
5.1.1 ❌ Bad Example
5.1.2 ✅ Improved Example
='sin(x)', color='b')
plt.plot(x, y, label'Time (s)')
plt.xlabel('Amplitude')
plt.ylabel('Sine Curve')
plt.title(
plt.legend() plt.show()
5.2 2. Poor Color Choice
5.2.1 ❌ Bad Example
='yellow')
plt.plot(x, y, color plt.show()
5.2.2 ✅ Improved Example
='darkblue')
plt.plot(x, y, colorTrue, linestyle='--', alpha=0.7)
plt.grid('Good Contrast for Better Readability')
plt.title( plt.show()
5.3 3. Unreasonable Axis Scaling
5.3.1 ❌ Bad Example
plt.plot(x, y)0.5, 1)
plt.ylim( plt.show()
5.3.2 ✅ Improved Example
plt.plot(x, y)-1.2, 1.2)
plt.ylim(0, 10)
plt.xlim(True)
plt.grid('Reasonable Axis Scaling')
plt.title( plt.show()
5.4 4. Overcrowded with Too Many Lines
5.4.1 ❌ Bad Example
for i in range(10):
+ i * 0.2))
plt.plot(x, np.sin(x plt.show()
5.4.2 ✅ Improved Example
='sin(x)')
plt.plot(x, np.sin(x), label='cos(x)')
plt.plot(x, np.cos(x), label
plt.legend()'Less is More: Reduced Information Density')
plt.title(True)
plt.grid( plt.show()
5.5 Conclusion
Good plots are characterized by clear labels, good readability, and a reasonable amount of information.